Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8CTG_1)}(2) \setminus P_{f(2PRX_1)}(2)|=71\),
\(|P_{f(2PRX_1)}(2) \setminus P_{f(8CTG_1)}(2)|=85\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001100010111001110000011001000000011101001111101000101011100100110100000111100010001011011110001111100100001100101001010111101110
Pair
\(Z_2\)
Length of longest common subsequence
8CTG_1,2PRX_1
156
3
8CTG_1,5BQG_1
138
3
2PRX_1,5BQG_1
148
4
Newick tree
[
2PRX_1:78.22,
[
8CTG_1:69,5BQG_1:69
]:9.22
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{292
}{\log_{20}
292}-\frac{132}{\log_{20}132})=49.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
8CTG_1
2PRX_1
63
57
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]