Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8CQN_1)}(2) \setminus P_{f(3SUR_1)}(2)|=35\),
\(|P_{f(3SUR_1)}(2) \setminus P_{f(8CQN_1)}(2)|=131\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110000000001001000100011001000000000100011000000110110111100010001011010110000000000011100000001011100100011000010011001011000011101010011101000000110010000001001001100010100010011011011000100111110010001000110010000000011010001100100110010011000101110000100110010011001000
Pair
\(Z_2\)
Length of longest common subsequence
8CQN_1,3SUR_1
166
4
8CQN_1,8GAT_1
186
4
3SUR_1,8GAT_1
160
8
Newick tree
[
8CQN_1:90.69,
[
3SUR_1:80,8GAT_1:80
]:10.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{800
}{\log_{20}
800}-\frac{275}{\log_{20}275})=144.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8CQN_1
3SUR_1
182
136
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]