Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8COL_1)}(2) \setminus P_{f(9ETO_1)}(2)|=75\),
\(|P_{f(9ETO_1)}(2) \setminus P_{f(8COL_1)}(2)|=101\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011010011010100111100000111111010101110110100111100100110111110011101011100011110100010000111110110011001011001101010001110010010110110000010011110100000101010110001101010111001011111100010010011001111001101110110101101101010001101011011011101010001101111011100110111011110011110100001100110111110110110000010111111111110010110110101001101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{705
}{\log_{20}
705}-\frac{341}{\log_{20}341})=99.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
8COL_1
9ETO_1
128
123
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]