Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8CGU_1)}(2) \setminus P_{f(6IGX_1)}(2)|=9\),
\(|P_{f(6IGX_1)}(2) \setminus P_{f(8CGU_1)}(2)|=288\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110011111100011001011000111001110100110110111000110101010111001110110110111111111000100000001001101110110111011101110110100011111100100011011111111101100100111110110110011010010101101001011110011111111111000001110000001001001110101000111011110011001101110111101101100010001110110110000011001100011111110110011001010011110011110101100011100000101111110110110111111010010101101110101110001101011001010010101010111111100000011100101111010000011011111111111111011110011010000010001001101001000101111111101001100110000101001101100101101101011111101011101001100111100100111010111101010101110110001001110011101011110000011100011000111110010100011010011011100011100001011111111101111000011101011011011110101011111000111111101001101101111101100000011101111100110100011101011111010111111011101111001110100001101100010100101110110100110001111100101000001111010110000011110011010100111001100100011111101011001011110011110001110111001101111100010101110110111101010110001100011010110101111110000100011000011010001011111000001111101111101010000011111001011110111010010101100100100110001010010111101001110011100001011011101011000001000000100100110110001100111110001111111100100110110111001111111110111110110100111001001011000001011001111001010101010010110110101010111111111011000010111110111011100001011110101001011000111001111000101100011000010111100111100100110110010111001111010010110111010100000111000010101010010001001010010111110111001011111111011101100011000001111111010001001000010110001011001111011110010110111101100101111111000101100111001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2379
}{\log_{20}
2379}-\frac{839}{\log_{20}839})=369.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8CGU_1
6IGX_1
311
296
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]