Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8CFB_1)}(2) \setminus P_{f(7PIN_1)}(2)|=118\),
\(|P_{f(7PIN_1)}(2) \setminus P_{f(8CFB_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011011101111000011010111110001111000111111100001100110110111010101001111001111110101000011000001111111111111110100000001010001100101101011100110100110000101100101100000011001101100101011110100010000000001000010011001000110100111110101101000010001111011010110110101011011010001100100101011111010111000101010010110110001110011010001001110001110010101001000100110100000111110101101101010100110101100111010110000101111001001010111001000111011011111100101001001110101110100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{808
}{\log_{20}
808}-\frac{336}{\log_{20}336})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8CFB_1
7PIN_1
168
142
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]