Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BUG_1)}(2) \setminus P_{f(6DRS_1)}(2)|=167\),
\(|P_{f(6DRS_1)}(2) \setminus P_{f(8BUG_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111010000110100101101010101001001011110000101011010110110011101011110110101000011111010001011000001001011001010100011010001111110100011110100111011110000001011010100101101011010011010110001010010000101000010011100001010101111110111111111000100001000111111110000110000101010001110101011111100000101010100101011100011001001001111110011000110101000001001111001001111101011010001010110001110010101100111101001010010100111000100100001000111100010100001100110101000110001000011000011000011001010011110000101101001100001101100011001000111101110100101001011110000101001100010111001101010111010001010010000010000000001111010001011111011001111100110101001100101011011011000011110011011100000110000000010011110110110110010111001100001001011110101111110010001001110100010011001101000110010000000110111010110011010010100111010000101100010100110110010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1096
}{\log_{20}
1096}-\frac{256}{\log_{20}256})=224.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BUG_1
6DRS_1
284
183
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]