Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BSK_1)}(2) \setminus P_{f(2ICP_1)}(2)|=162\),
\(|P_{f(2ICP_1)}(2) \setminus P_{f(8BSK_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011101101000100100010000110110011011010101111010010100000100011101000101100111100110001000110010110100111000001001110111111001100110010010011011001110001110010100000010001111001000001101001111101010100101000010111101101110110100110101100010110001100101011101111100111111111110111110101110011001011010001101001000001
Pair
\(Z_2\)
Length of longest common subsequence
8BSK_1,2ICP_1
199
3
8BSK_1,2KVE_1
185
3
2ICP_1,2KVE_1
106
3
Newick tree
[
8BSK_1:10.62,
[
2KVE_1:53,2ICP_1:53
]:53.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{409
}{\log_{20}
409}-\frac{94}{\log_{20}94})=96.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BSK_1
2ICP_1
123
79.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]