Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BSH_1)}(2) \setminus P_{f(7GYE_1)}(2)|=117\),
\(|P_{f(7GYE_1)}(2) \setminus P_{f(8BSH_1)}(2)|=25\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000001011010101110000010001111101001100000101110011100110000110100110100001001100000011100001000011101000010010001101111111110100000010010001100101111011111100101101001000010000110100000101100110100101111110011011001011010011111001010100110010100101111001101010110110111010000111011111011101111111000100110000010000100000100100011001110100101111000011100100100001111110011001110000101110000101011101011100000101011110101100001001000011111000101101010000111101100110001110111010010110001100000001000101001100111110111110100011111110111001000011011011000110100001000000100101110101010100010000110110001000110001100000000111101010010100010111100101010011110011111100100110100110000100101011100101011011100111101100011100101110010100000011011001110001010011001001110101
Pair
\(Z_2\)
Length of longest common subsequence
8BSH_1,7GYE_1
142
4
8BSH_1,2DSW_1
160
4
7GYE_1,2DSW_1
156
3
Newick tree
[
2DSW_1:81.50,
[
8BSH_1:71,7GYE_1:71
]:10.50
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1162
}{\log_{20}
1162}-\frac{394}{\log_{20}394})=201.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BSH_1
7GYE_1
258
191.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]