Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BQE_1)}(2) \setminus P_{f(7QKI_1)}(2)|=74\),
\(|P_{f(7QKI_1)}(2) \setminus P_{f(8BQE_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001011010001011011011001010101000001110011110001011000011110000110111101111011100000000100100001100001101010110111111011111001100100110100011101110111101111111100010100101110100110111010111011111011011010111101010111100100111000011110110101001101001010010001010100001111011111010110010111100110110111101110110101100101001111010000110110110000011100101111001010011011001110111010110011001000111001101010101100000001111101101101100110110001001010101000001101000111011101110101110100011101001101101011011110100011001010101001111011101010100101010110001110000111001100101110010001101111010010101010101000011110110100011101110110111101111100111110001111111000101001011111010110100111101010010101111110010111111010001011011011101110010011101110111110100010110101000110101000111111011111100101110000001010010101001001110101110100010011001010110101011011010001101101011111001010101000111111100110011000101101101101011100011101001111001011110001111011111110111110110010111110101001101101110001110001110110110111010111010001110011011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1467
}{\log_{20}
1467}-\frac{441}{\log_{20}441})=262.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BQE_1
7QKI_1
293
215
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]