Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BDO_1)}(2) \setminus P_{f(1WNR_1)}(2)|=62\),
\(|P_{f(1WNR_1)}(2) \setminus P_{f(8BDO_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111110000001100100000110100110111001100001000001100100110011000010101110111110100010110101100110110110
Pair
\(Z_2\)
Length of longest common subsequence
8BDO_1,1WNR_1
106
3
8BDO_1,4CZT_1
176
4
1WNR_1,4CZT_1
180
3
Newick tree
[
4CZT_1:98.11,
[
8BDO_1:53,1WNR_1:53
]:45.11
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{198
}{\log_{20}
198}-\frac{94}{\log_{20}94})=34.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BDO_1
1WNR_1
41
38.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]