Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ATT_1)}(2) \setminus P_{f(5THO_1)}(2)|=121\),
\(|P_{f(5THO_1)}(2) \setminus P_{f(8ATT_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111000000011100111111001001011011001101010001100101000000100101101011111001110000010000110000010011010101011011000100100000110000111101000001000110110101010011110110011000110011010111111000100111011100000001100110000111100100101100001001011110110111001011111010110101010010010001111000110011001101100010001000011000110100001101001110111010111011010000001
Pair
\(Z_2\)
Length of longest common subsequence
8ATT_1,5THO_1
170
3
8ATT_1,7RWA_1
164
3
5THO_1,7RWA_1
180
4
Newick tree
[
5THO_1:89.30,
[
8ATT_1:82,7RWA_1:82
]:7.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{594
}{\log_{20}
594}-\frac{240}{\log_{20}240})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ATT_1
5THO_1
128
106.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]