Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ADC_1)}(2) \setminus P_{f(3UVI_1)}(2)|=61\),
\(|P_{f(3UVI_1)}(2) \setminus P_{f(8ADC_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01100000011110010101000011100110010001010110111010100101111001110111000010111110000100001001010010100100110101010110100110110010000011011111100001010111010100111010100101101000000011001001110000111000001110010101100
Pair
\(Z_2\)
Length of longest common subsequence
8ADC_1,3UVI_1
172
3
8ADC_1,8HCF_1
168
3
3UVI_1,8HCF_1
176
4
Newick tree
[
3UVI_1:87.98,
[
8ADC_1:84,8HCF_1:84
]:3.98
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{603
}{\log_{20}
603}-\frac{215}{\log_{20}215})=110.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ADC_1
3UVI_1
138
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]