Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ACW_1)}(2) \setminus P_{f(5YKD_1)}(2)|=59\),
\(|P_{f(5YKD_1)}(2) \setminus P_{f(8ACW_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000110111011011010011011111010011001011001111100011101010101100100101110000011101001101011010011001100111011100010100101001101000110001100111011000110011110000011110110001111010111000001111110110110010101000100110000101000110110111111001011011010011101000011111011101010000110111111001011001111010011000111101011010110100101101011000101011001000011111111000101000111011010100100000100001111100001111010101110010110000110111101000011100110110000101100010010001
Pair
\(Z_2\)
Length of longest common subsequence
8ACW_1,5YKD_1
134
5
8ACW_1,6GCP_1
155
14
5YKD_1,6GCP_1
165
4
Newick tree
[
6GCP_1:83.93,
[
8ACW_1:67,5YKD_1:67
]:16.93
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{947
}{\log_{20}
947}-\frac{468}{\log_{20}468})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ACW_1
5YKD_1
161
156.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]