Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ACB_1)}(2) \setminus P_{f(7JIN_1)}(2)|=159\),
\(|P_{f(7JIN_1)}(2) \setminus P_{f(8ACB_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101010100000111010111010010000100101100000000101100110100110001111110111110100100101011101101000100110111001110100110010011010101000001011001100010010110011010010000110100101010111100100011110101000000000000001000100111
Pair
\(Z_2\)
Length of longest common subsequence
8ACB_1,7JIN_1
164
2
8ACB_1,5FLK_1
180
3
7JIN_1,5FLK_1
182
2
Newick tree
[
5FLK_1:93.16,
[
8ACB_1:82,7JIN_1:82
]:11.16
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{232
}{\log_{20}
232}-\frac{12}{\log_{20}12})=76.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ACB_1
7JIN_1
100
52.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]