Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ZHU_1)}(2) \setminus P_{f(3OTI_1)}(2)|=128\),
\(|P_{f(3OTI_1)}(2) \setminus P_{f(7ZHU_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000100010110101110110101100010011011000110100001100000100010000000110111111010110000111110100111111010111010001001001000011001001000100100110010010110001001001011100000110110011001101111101110100010011110011111011100111000000101001101110000100100011001100110001100110111010011010101000110010110100111100110001001111111001001010010000101100101100000111000101010111010010110100010111101010000111111110110110000111010100010101010000011101010011010100011110101000000010100000001011010001100111100001100001011101101110010010101110011001100100111001100001001110001
Pair
\(Z_2\)
Length of longest common subsequence
7ZHU_1,3OTI_1
172
4
7ZHU_1,7YVW_1
276
3
3OTI_1,7YVW_1
192
3
Newick tree
[
7YVW_1:12.96,
[
7ZHU_1:86,3OTI_1:86
]:41.96
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{960
}{\log_{20}
960}-\frac{398}{\log_{20}398})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ZHU_1
3OTI_1
196
162.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]