Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ZHG_1)}(2) \setminus P_{f(1EJM_1)}(2)|=10\),
\(|P_{f(1EJM_1)}(2) \setminus P_{f(7ZHG_1)}(2)|=132\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001100110000100111110010010010111110001100111001010111001111111010000000011110100100110111011000110110101001101100010000011111111110110000111111001111001100000010111000111101001111110000011100111111111001011110000100011111011100110110011001110110011011110110110001001110011111001101011100101111101111100011111011101001111010111000111000010111101011011101011110000010110101111110010110111111100000110100101000001101011000000011110101111110000111110111110011101111001101101100100101101101001101100011101101100100100100111000111101100101100111000101110000011011110000101100011001011110001001111101001011100001111001111111100111110100000111101111101111000010110000111111100100110110111110100011001111011100011011011111001111100111111101110011100111010001110110000110010111111010111001110100111011100001110001000110100101111111001001110001001000111111010110010111100111100011111110011011111110100101111110111101010110001100111000110100111110000100111110110110111101111100111001111100001001110101001111111110101011001001001100010100101111010001000111010110110111011110001010000011001001100000000100011111111110100001111111001001101101110011111111111011101101101110011010100001111000001110010101010100101101110111101101110100110000111111111111011000000111000100000110001110010111001011000100010101111001111000001101000101010010010010101101110101000001000000101010100100010010000100011101111000111011110001100000000111111001110011100011100001011111111111110010110111101100101111111000101100011001000000
Pair
\(Z_2\)
Length of longest common subsequence
7ZHG_1,1EJM_1
142
3
7ZHG_1,1BCS_1
184
3
1EJM_1,1BCS_1
164
4
Newick tree
[
1BCS_1:91.89,
[
7ZHG_1:71,1EJM_1:71
]:20.89
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1720
}{\log_{20}
1720}-\frac{223}{\log_{20}223})=386.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ZHG_1
1EJM_1
269
182
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]