Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ZEJ_1)}(2) \setminus P_{f(8WOU_1)}(2)|=65\),
\(|P_{f(8WOU_1)}(2) \setminus P_{f(7ZEJ_1)}(2)|=104\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01100111001010100110100001111110101110001111010010001100010101110111011101111110101000110111011110110001111011011101010010111010010101001111001001110111110101110100010001110000000011100110001100000111011000010110110001111110111011100101111111010001011011011011101100010101111000100001110011010101011001011010101010110011011001011000101110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{740
}{\log_{20}
740}-\frac{341}{\log_{20}341})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ZEJ_1
8WOU_1
139
126
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]