Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7YZM_1)}(2) \setminus P_{f(5VZX_1)}(2)|=135\),
\(|P_{f(5VZX_1)}(2) \setminus P_{f(7YZM_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000011011010100000111111110001110010010111010111101011010010010001001110101011001101010101110111000111100111001011100111101001010101100111000001000110110001110110110000000001100010011011000011010100101110010000011001001000011110110111100111100100110010010001000110101110001101110101011101010111011111111000011000100110111010111001110010100101010010100110110010101110001010010110001110010000111101000100000101000101110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{642
}{\log_{20}
642}-\frac{220}{\log_{20}220})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7YZM_1
5VZX_1
152
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]