Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7YXG_1)}(2) \setminus P_{f(1CGM_1)}(2)|=203\),
\(|P_{f(1CGM_1)}(2) \setminus P_{f(7YXG_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001101001001101110010010110011010011011010001000001111001101111101010011011100010111010101011100010001111100010100110010010111001000000101011011101010010110001001101101111000110010001000100110100011111100100110110101100000010101011000010001001101011010110010010101101010110110110011001000000111011001000000000011001001001
Pair
\(Z_2\)
Length of longest common subsequence
7YXG_1,1CGM_1
203
2
7YXG_1,8SUV_1
187
4
1CGM_1,8SUV_1
108
2
Newick tree
[
7YXG_1:10.27,
[
8SUV_1:54,1CGM_1:54
]:54.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{325
}{\log_{20}
325}-\frac{3}{\log_{20}3})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7YXG_1
1CGM_1
140
70.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]