Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7YPI_1)}(2) \setminus P_{f(7QQQ_1)}(2)|=256\),
\(|P_{f(7QQQ_1)}(2) \setminus P_{f(7YPI_1)}(2)|=12\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010111111000111100001101101000011001111001111110001010011100100111011100110110101011101010101000111101010101100111100111011100100110001100001010000101101000111110011001010110000110100101010011111000100101000110010001000000001000101100011100110010110001001111011000110010010010010101011000101100111001010110100000110000011001000110011100100110100011111111111110001100110010001001011110001010100000111111011011001111011111001001000101011011101101000001000010110010011110010010011011100101101110001000111000111001000110101010011110110000001110110001101100110111011101100101001100111100010010001011010111101111011010111111010101010110110001011100101000001110010001010101101101001101110110111011000110101110101010101111111000111100111001111000010100110011011010110011011001111010111110100000011111
Pair
\(Z_2\)
Length of longest common subsequence
7YPI_1,7QQQ_1
268
3
7YPI_1,5IFU_1
142
5
7QQQ_1,5IFU_1
276
3
Newick tree
[
7QQQ_1:15.61,
[
7YPI_1:71,5IFU_1:71
]:80.61
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{877
}{\log_{20}
877}-\frac{84}{\log_{20}84})=225.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7YPI_1
7QQQ_1
291
157.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]