Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7YLM_1)}(2) \setminus P_{f(5IXL_1)}(2)|=224\),
\(|P_{f(5IXL_1)}(2) \setminus P_{f(7YLM_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001101100100000100001000010110101001011011010100110001001010101011111010100011011011111010011000010011001001001010100010100100101000010100110000000001100001000110011101010100100110000100110100101110010010101101100100101000010001010010110100000010001001001000010101000111010100000010100000001010101110000111000001000100100000100001101000100110010010001100000000001000010101100000110000111000110001100101000011000101001100101010110001001000100000010000011110000010010011111000101000110111101011010111011001000000110110000001110111001010100100100011111001001110101001101000110110000010011100001011010011010101011100110100110100010100011100101000010010110000010100011010000000000101100000100001001100000100010010010000010000100100010010001000100010010001001110000110011001001000000110001101010010101001111100001010000000001100100010100110010000000000100110000001010101100110010001111000001101100101010010001100000100101010000111010100110010101101100110111101001000101010111010001110010000001100110011011110010011101100100110000001100111001010000001110101101100000101001111011101000101101100000010
Pair
\(Z_2\)
Length of longest common subsequence
7YLM_1,5IXL_1
231
4
7YLM_1,6ANS_1
164
4
5IXL_1,6ANS_1
191
6
Newick tree
[
5IXL_1:11.83,
[
7YLM_1:82,6ANS_1:82
]:30.83
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1211
}{\log_{20}
1211}-\frac{118}{\log_{20}118})=297.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7YLM_1
5IXL_1
372
205
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]