Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7XYE_1)}(2) \setminus P_{f(3TKC_1)}(2)|=107\),
\(|P_{f(3TKC_1)}(2) \setminus P_{f(7XYE_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100110001011100011111011111011101100010101011101100011011111111111010101110001000011110100111011001010101101010010001111001100110010111110110010110001110010110101000110110101010100111111100011011101011010010100101011100010111110111111100001111111110011010011110111001010111011000001110110111011101011100110101011101000111100100010011010010010110011110111111100101111101000011010111100110110110110110010100011011000011001100011010011101110110110011011110110010000011101101111000000001110010100010
Pair
\(Z_2\)
Length of longest common subsequence
7XYE_1,3TKC_1
154
4
7XYE_1,3LLI_1
172
5
3TKC_1,3LLI_1
166
4
Newick tree
[
3LLI_1:86.87,
[
7XYE_1:77,3TKC_1:77
]:9.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{771
}{\log_{20}
771}-\frac{259}{\log_{20}259})=141.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7XYE_1
3TKC_1
178
134
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]