Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7XHP_1)}(2) \setminus P_{f(7DGR_1)}(2)|=151\),
\(|P_{f(7DGR_1)}(2) \setminus P_{f(7XHP_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000100111110010100011110101101011110010110000000000110011001100111000100010101100110101010010011011010111001111010001011011111100111111000111001110011000010011101100001001000110001001101011011101110001100101011001110101101000101001100011011111110111010101100001011011011000011000101001111011001110100110100000111101010010101111010010011100001110101110011000111101001011101000101011100111000110100111010100110000001100011101101010111000010101111011001101001010001010111101111100011010010000000
Pair
\(Z_2\)
Length of longest common subsequence
7XHP_1,7DGR_1
192
3
7XHP_1,5EAG_1
136
6
7DGR_1,5EAG_1
192
3
Newick tree
[
7DGR_1:10.66,
[
7XHP_1:68,5EAG_1:68
]:35.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{669
}{\log_{20}
669}-\frac{176}{\log_{20}176})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7XHP_1
7DGR_1
178
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]