Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7XEL_1)}(2) \setminus P_{f(3NPM_1)}(2)|=90\),
\(|P_{f(3NPM_1)}(2) \setminus P_{f(7XEL_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010100100011110001010011010011000010111001000000000010011001100100100110001001101001101110010000101111001010101100111001000101111001101011010011100010101001000100000111100100111010110011011000111111011000101010100100011110000101101111101001110010110111011011110000100111010110111111111111101100111001000000111011001001011010110001111010100101001101101011110110001011101101010101010100000010011011000000100111010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{729
}{\log_{20}
729}-\frac{310}{\log_{20}310})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7XEL_1
3NPM_1
145
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]