Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7XBN_1)}(2) \setminus P_{f(8AWG_1)}(2)|=103\),
\(|P_{f(8AWG_1)}(2) \setminus P_{f(7XBN_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001000001001011110111110011101010010101011100100101001111110001011110101000100000110010111000110001100001001110010100101101010011011101111110101011001111111011001111101001110110011111001101001110101010011000010010011011100000010010000111110111111000010111011011100100111101010110111001100011100100011101101010111110011111101000100110100101000011011110110101111110101011101110001011101011011101011101101111010010011000110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{680
}{\log_{20}
680}-\frac{236}{\log_{20}236})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7XBN_1
8AWG_1
153
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]