Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7XAU_1)}(2) \setminus P_{f(6ZBB_1)}(2)|=219\),
\(|P_{f(6ZBB_1)}(2) \setminus P_{f(7XAU_1)}(2)|=11\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011110011011110000000010100000000000101110111011001101000110111010101100000000010001000111011011101111010011101110010100100101101111001111111111101111011110110011101011001001101011010001111011001010010010110111111011111111101110000110000010111001110011110011111111101101001111101000110110000000000100110111111110111101101001011101011101110111110010001011101110001000100110110101000100000000000100000000011010011101000110010011001110011001110101100110010011010101111001101001101001101101100001011110101110110101100110100111110100101010110100110001101010111010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{629
}{\log_{20}
629}-\frac{66}{\log_{20}66})=166.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7XAU_1
6ZBB_1
208
116
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]