Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7WOB_1)}(2) \setminus P_{f(8JBM_1)}(2)|=52\),
\(|P_{f(8JBM_1)}(2) \setminus P_{f(7WOB_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111111111100001010000011110000100110010011000110000011111100101101101010010001001111100110110000001101111100100000011110010011101001010001111100000000110001010001000010010011110101001010010011100101010100000110110011011011011101111101001001111000010110000110111110011010100111000001010011001101100000010010100110000010101000110110100101110110100110101100001000110001100010100100011010010010100101001110100100111100101100000110010101111000010001110000100110000101100010001001100100110110001110001101001110010011110101101110101100000110000101010110101110000001111001100110000110010010110101001111011011000000111100110000111110100101010100010011000110111100100000001111111010000000011010011000111001011100011000001111001010100011110100001000101010000000111001010001001101111000000001110100100011100111101001110100100001100111001011011110001001101110011010010110111111000111000011111010011011111110111110110010111100011000001110010011101000100010111010011000101100110010001111001100110010110101010011010100100010001101101010101110010001110000101010100110110011011111010011100001001111000101011001111001001110000100101100000110100011111100010011010100100010001000001010110101101011010001001001100100011010011000010101101100101010001011110011011011101111100101001110111011011001010011000000000
Pair
\(Z_2\)
Length of longest common subsequence
7WOB_1,8JBM_1
92
5
7WOB_1,2DBG_1
260
3
8JBM_1,2DBG_1
254
3
Newick tree
[
2DBG_1:14.99,
[
7WOB_1:46,8JBM_1:46
]:99.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2309
}{\log_{20}
2309}-\frac{1021}{\log_{20}1021})=307.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7WOB_1
8JBM_1
390
350.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]