Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7WNT_1)}(2) \setminus P_{f(8TLR_1)}(2)|=137\),
\(|P_{f(8TLR_1)}(2) \setminus P_{f(7WNT_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101011111110011101011111001100101100110111100111111000111011110100100010010111100100001111111101010111110010111110000000101111010010000011100001110000101111110011101100101010011101010011110011001101110000010111111000011101001101101011110110010010011011111100101110011001011001111011000110111100111001111001001011011001001000010101101111000111100011111101100111011001010101010101101111001101001111010101101010111001110001111001101011110101011111101110111110110101100111001111101110010101111101000110001011011100101010011110100110110110001101110000001111101101
Pair
\(Z_2\)
Length of longest common subsequence
7WNT_1,8TLR_1
172
3
7WNT_1,7RGE_1
166
4
8TLR_1,7RGE_1
162
3
Newick tree
[
7WNT_1:85.65,
[
7RGE_1:81,8TLR_1:81
]:4.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{724
}{\log_{20}
724}-\frac{166}{\log_{20}166})=157.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7WNT_1
8TLR_1
194
125
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]