Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7WGV_1)}(2) \setminus P_{f(2FJM_1)}(2)|=148\),
\(|P_{f(2FJM_1)}(2) \setminus P_{f(7WGV_1)}(2)|=29\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010100000111100001001100100110001100000111111001011011010100100010011111001101100000011011111001000000111100100111010010100011111000000001100010100010000100100111101010010100100111001010101000001101100110110110111011111010010011110000101100001101111100110101001110000010100110011011000000100101001100000101010001101101001011101101001101011000010001100011000101001000110100100101001010011101001001111001011000001100101011110000100011100001001100001011000100010011001001101100011100011010011100100111101011011101011000001100001010101101011100000011110011001100001100100101101010011110110110000001111000100001111101001010101000100110001101111001000000011111110100000000001100011100101110001100000111100101010001111010000100010101000000011100101000100110111100000000111010010001110011110100111010010000110011100101101111000100110111001101001011011111100011100001111101001101111111011111011001011110001100000111001001110100010001011101001100010110011001000111100110011001001010101001101010010001000110110101010111001000111000010101010011011001101111101001110000100111100010101100111100100111000010010110000011010001111110001001101010010001000100000101011010110101101000100100110010001101001100000101010001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1514
}{\log_{20}
1514}-\frac{310}{\log_{20}310})=311.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7WGV_1
2FJM_1
394
247
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]