Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7VTZ_1)}(2) \setminus P_{f(5EES_1)}(2)|=123\),
\(|P_{f(5EES_1)}(2) \setminus P_{f(7VTZ_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111000010111001000000001001000000100001010101001011011110111101101100100001001110000010000101000110100111010011111011010101001111010111100011011101001011110100110000011101010010000000010010011100010001110111101010100011010001011101100000101000010000100100101110110110011011010101011010100101100101001000101011100000101010011111110010010111111110010110101101000101000000010001001011001001010101101010000000011011110101100000101111111011000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{689
}{\log_{20}
689}-\frac{247}{\log_{20}247})=123.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7VTZ_1
5EES_1
153
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]