Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7VFF_1)}(2) \setminus P_{f(1CEC_1)}(2)|=96\),
\(|P_{f(1CEC_1)}(2) \setminus P_{f(7VFF_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000111100011010110010101110001100011101010000101100111010110101110110110110001001010000111101010010000100011100010000100101110100010010010101001101000100101000010101010110011100001010010001101101011101100101010110010011101001010100101100101000100100000110011000000001010100110011110011101010010110110011101001010101001100101010001111100000110010001011010000100001110100010110001110110000010010000100010011100111011010000011001010110011000011100100011000001000101010101110100101010010001010110001010011001000111100010010000110100111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{874
}{\log_{20}
874}-\frac{343}{\log_{20}343})=143.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7VFF_1
1CEC_1
180
149.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]