Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7VAP_1)}(2) \setminus P_{f(5ILF_1)}(2)|=174\),
\(|P_{f(5ILF_1)}(2) \setminus P_{f(7VAP_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011100111111110111110100100110011110110101001110100000110110111001111110111111011001100110010000110100111101100000111011101100101111110110111000111110101010010111000100111110010010100011100101100010100111011011011111111101111111111001000011010010111011010010010011101101001001111100011110000111110010101110110010001101111100000110110010001001110010110111011110001101101110011101111101111010011000010111111010101110001111010100011001101100001100010100110011000111001101111011001001110110110001100010001010001001011101111100010111001101001101111001101001000011101001100101110111
Pair
\(Z_2\)
Length of longest common subsequence
7VAP_1,5ILF_1
209
3
7VAP_1,7DVE_1
148
5
5ILF_1,7DVE_1
185
4
Newick tree
[
5ILF_1:10.63,
[
7VAP_1:74,7DVE_1:74
]:31.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{707
}{\log_{20}
707}-\frac{129}{\log_{20}129})=165.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7VAP_1
5ILF_1
204
125
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]