Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7UYY_1)}(2) \setminus P_{f(4OBT_1)}(2)|=114\),
\(|P_{f(4OBT_1)}(2) \setminus P_{f(7UYY_1)}(2)|=48\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111011001100000111110101100111011100101100110001101011101110010011011101001100101000011000111101101100011011110010010110000000110010010101011001000011110111111100111111111110111111110111111110011101110001011011011001111111101111110011011100101111010100101011100110001001110011001111100100101110011011110110000100011101010011100111010010110110100011111011010010101001000011101111001111101011011010001100011111101001001001111100010111101001010011010001011110100110101001111000011110000111000000100111010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{771
}{\log_{20}
771}-\frac{257}{\log_{20}257})=141.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7UYY_1
4OBT_1
177
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]