Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7UUX_1)}(2) \setminus P_{f(1UFQ_1)}(2)|=99\),
\(|P_{f(1UFQ_1)}(2) \setminus P_{f(7UUX_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011001001100101000010011001001100110010000001011001001000001010110010111010110101000000111011010011010110011010110100110010011000100100101010000110111011100100101011111000101110000111101111001000100011011100100100101001010100000011000110000000011000000010110011001000100101100001001110110001000010100100010011111100100001000111010110001100000011000100000011111001
Pair
\(Z_2\)
Length of longest common subsequence
7UUX_1,1UFQ_1
164
4
7UUX_1,1HKC_1
178
4
1UFQ_1,1HKC_1
172
4
Newick tree
[
1HKC_1:89.27,
[
7UUX_1:82,1UFQ_1:82
]:7.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{616
}{\log_{20}
616}-\frac{252}{\log_{20}252})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7UUX_1
1UFQ_1
128
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]