Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7UUR_1)}(2) \setminus P_{f(2NSP_1)}(2)|=118\),
\(|P_{f(2NSP_1)}(2) \setminus P_{f(7UUR_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101110111010101010101001110011001111011011101001011111010101101100100010110011000111010110010010001001100101111101000001000100011001110110000111110101101011111011000111111110110100100111110010001100011100100110000100111110000000000011110001011100010111001101001010100010101001111100111101001010010100010001001001101101001110100100010001100100111111011100111100111011010000000111101001111011100110100110000110011001010001000110010101110001101110011110000100001101011011100100111110011110111010011011011001000110010
Pair
\(Z_2\)
Length of longest common subsequence
7UUR_1,2NSP_1
164
4
7UUR_1,6EGA_1
176
4
2NSP_1,6EGA_1
176
4
Newick tree
[
6EGA_1:89.91,
[
7UUR_1:82,2NSP_1:82
]:7.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{855
}{\log_{20}
855}-\frac{342}{\log_{20}342})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7UUR_1
2NSP_1
178
147
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]