Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7UTP_1)}(2) \setminus P_{f(3ZRH_1)}(2)|=99\),
\(|P_{f(3ZRH_1)}(2) \setminus P_{f(7UTP_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110010100000101100111010100001101011000000011100100011010111001010110110110101111110110101110010010110100011011100100010011001000010101111100000111011110000111011010110110001010001110001001010010010010010100100011101100100110101110001001000100001111111100110001100110111000000110011000010010110110110011000101000111001111101110000001101010011100010000001001001001100001001010110010101110000111100111100110000110001110110011110101011000100010101010111100000110111011101000001010101001100001110101110101010001011001010100010011001111011000001110010
Pair
\(Z_2\)
Length of longest common subsequence
7UTP_1,3ZRH_1
160
4
7UTP_1,3ZRG_1
235
3
3ZRH_1,3ZRG_1
209
4
Newick tree
[
3ZRG_1:11.79,
[
7UTP_1:80,3ZRH_1:80
]:39.79
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1002
}{\log_{20}
1002}-\frac{454}{\log_{20}454})=144.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7UTP_1
3ZRH_1
189
169.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]