Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7TQY_1)}(2) \setminus P_{f(4RHK_1)}(2)|=85\),
\(|P_{f(4RHK_1)}(2) \setminus P_{f(7TQY_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001001101101000011010000101110101100100001101000011110101000000000000001010101001100011000001110011110011011000111101100011001000111001010010000111001100000000100000011100110100101110110101000010101001111110100100010010000110101001010000100110110000011100010001010010000100100110111010000000100101000000111010110000010100000110101101110001110000110100110100011111001011001000001100000100110101110000111101010000000010010010010010001100000100011001011000000100101000011000100000100010000000
Pair
\(Z_2\)
Length of longest common subsequence
7TQY_1,4RHK_1
142
6
7TQY_1,2FZC_1
162
4
4RHK_1,2FZC_1
156
4
Newick tree
[
2FZC_1:82.15,
[
7TQY_1:71,4RHK_1:71
]:11.15
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{842
}{\log_{20}
842}-\frac{351}{\log_{20}351})=132.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7TQY_1
4RHK_1
162
139.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]