Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7TOF_1)}(2) \setminus P_{f(2EQQ_1)}(2)|=243\),
\(|P_{f(2EQQ_1)}(2) \setminus P_{f(7TOF_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001110000101110001101011000000111111101011000101011111001111000111101000101101000001110101000101001110000111000011000010001011011001001101111101001100010000100111001110011100100000100010011000010010001100110011110110011111100001101110100111001011010011110011000110110111100110000001000010110010010100111100110101010100101001011010001011111101000010111111001011000010101010011101100000000111010100110001100011111010000101001000001011010001110110100101100001001101101110010100101110101001100100110011100010001101001
Pair
\(Z_2\)
Length of longest common subsequence
7TOF_1,2EQQ_1
250
3
7TOF_1,8GRQ_1
216
3
2EQQ_1,8GRQ_1
102
2
Newick tree
[
7TOF_1:13.62,
[
8GRQ_1:51,2EQQ_1:51
]:80.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{543
}{\log_{20}
543}-\frac{28}{\log_{20}28})=158.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7TOF_1
2EQQ_1
204
106.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]