Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7TIN_1)}(2) \setminus P_{f(2CHR_1)}(2)|=103\),
\(|P_{f(2CHR_1)}(2) \setminus P_{f(7TIN_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111000111000110110010101100111011000011111101010100110100001111111110100011111000101110001111000100111111000010010011110110010110001000101111000000101100010110001011001110101110011010101001100010111000001010110011000011111101000010011000010011111011001001001011000011100110101011101101110001001100001101110000010111111010001010011001100001001011001001000100010001001000011110110000000111100011100100111000101010011011011100111111000101111010100010111100100101011110001111100110000100010011101011010001010010100100100100101100000100110000001000011000100110001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{929
}{\log_{20}
929}-\frac{370}{\log_{20}370})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7TIN_1
2CHR_1
187
154.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]