Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7TIM_1)}(2) \setminus P_{f(6ZLH_1)}(2)|=54\),
\(|P_{f(6ZLH_1)}(2) \setminus P_{f(7TIM_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001111101010100001001100100101100101110111001000101100101011100101010111010001001001110111110000000100000111000011110111111011001000011001011000101110010010011110011111101111010010010101001110011001100101101101010011010001010111111101010110110000
Pair
\(Z_2\)
Length of longest common subsequence
7TIM_1,6ZLH_1
150
4
7TIM_1,3FBI_1
150
4
6ZLH_1,3FBI_1
182
3
Newick tree
[
3FBI_1:85.99,
[
7TIM_1:75,6ZLH_1:75
]:10.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{685
}{\log_{20}
685}-\frac{247}{\log_{20}247})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7TIM_1
6ZLH_1
143
113.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]