Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7TGM_1)}(2) \setminus P_{f(2QQY_1)}(2)|=167\),
\(|P_{f(2QQY_1)}(2) \setminus P_{f(7TGM_1)}(2)|=27\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001010011101010010010011100111011000110101101001001100001100001011001100101011010000011011111101110100011100011110100100010100001001010111110111011001100101011100101111100011011001011011111100001110111110010110001100010010111010110110011111011011001010111011000110110000001100010011010010000100110110111101101101010111001100110001110001101100011110001000110000010001111110001111100100100111110100010011101110011110111000101000111001010011111010001111001110011000110011110101111101001010110010110110011001101111111000111000110011010000001010100010000111101110010010100000110110101110111010011111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{761
}{\log_{20}
761}-\frac{149}{\log_{20}149})=172.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7TGM_1
2QQY_1
215
132.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]