CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
7SYR_1 5FWT_1 5XEM_1 Letter Amino acid
0 17 19 D Aspartic acid
550 41 31 G Glycine
0 10 31 K Lycine
0 31 12 P Proline
0 24 19 T Threonine
0 20 9 Y Tyrosine
0 25 16 V Valine
498 17 5 C Cysteine
0 15 3 Q Glutamine
0 18 24 E Glutamic acid
0 20 2 H Histidine
0 20 9 F Phenylalanine
0 6 0 W Tryptophan
418 26 19 A Alanine
0 15 5 R Arginine
0 13 28 I Isoleucine
0 30 30 L Leucine
0 7 10 M Methionine
0 19 18 N Asparagine
0 32 20 S Serine

7SYR_1|Chain A[auth 2]|18S rRNA|Oryctolagus cuniculus (9986)
>5FWT_1|Chain A|KREMEN PROTEIN 1|HOMO SAPIENS (9606)
>5XEM_1|Chains A, B|Cysteine synthase|Fusobacterium nucleatum subsp. nucleatum strain ATCC 25586 (190304)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
7SYR , Knot 343 1870 0.46 8 16 64
UACCUGGUUGAUCCUGCCAGUAGCAUAUGCUUGUCUCAAAGAUUAAGCCAUGCAUGUCUAAGUACGCACGGCCGGUACAGUGAAACUGCGAAUGGCUCAUUAAAUCAGUUAUGGUUCCUUUGGUCGCUCGCUCCUCUCCUACUUGGAUAACUGUGGUAAUUCUAGAGCUAAUACAUGCCGACGGGCGCUGACCCCCUUCGCGGGGGGGAUGCGUGCAUUUAUCAGAUCAAAACCAACCCGGUCAGCCUCCCCCCGGCCCCGGCCGGGGGGGUGGGCGCCGGCGGCUUUGGUGACUCUAGAUAACCUCGGGCCGAUCGCACGCCCUCCGUGGCGGCGACGACCCAUUCGAACGUCUGCCCUAUCAACUUUCGAUGGUAGUCGCCGUGCCUACCAUGGUGACCACGGGUGACGGGGAAUCAGGGUUCGAUUCCGGAGAGGGAGCCUGAGAAACGGCUACCACAUCCAAGGAAGGCAGCAGGCGCGCAAAUUACCCACUCCCGACCCGGGGAGGUAGUGACGAAAAAUAACAAUACAGGACUCUUUCGAGGCCCUGUAAUUGGAAUGAGUCCACUUUAAAUCCUUUAACGAGGAUCCAUUGGAGGGCAAGUCUGGUGCCAGCAGCCGCGGUAAUUCCAGCUCCAAUAGCGUAUAUUAAAGUUGCUGCAGUUAAAAAGCUCGUAGUUGGAUCUUGGGAGCGGGCGGGCGGUCCGCCGCGAGGCGAGCCACCGCCCGUCCCCGCCCCUUGCCUCUCGGCGCCCCCUCGAUGCUCUUAGCUGAGUGUCCCGCGGGGCCCGAAGCGUUUACUUUGAAAAAAUUAGAGUGUUCAAAGCAGGCCCGAGCCGCCUGGAUACCGCAGCUAGGAAUAAUGGAAUAGGACCGCGGUUCUAUUUUGUUGGUUUUCGGAACUGAGGCCAUGAUUAAGAGGGACGGCCGGGGGCAUUCGUAUUGCGCCGCUAGAGGUGAAAUUCUUGGACCGGCGCAAGACGGACCAGAGCGAAAGCAUUUGCCAAGAAUGUUUUCAUUAAUCAAGAACGAAAGUCGGAGGUUCGAAGACGAUCAGAUACCGUCGUAGUUCCGACCAUAAACGAUGCCGACCGGCGAUGCGGCGGCGUUAUUCCCAUGACCCGCCGGGCAGCUUCCGGGAAACCAAAGUCUUUGGGUUCCGGGGGGAGUAUGGUUGCAAAGCUGAAACUUAAAGGAAUUUGGCGAAGGGCACCACCAGGAGUGGAGCCUGCGGCUUAAUUUGACUCAACACGGGAAACCUCACCCGGCCCGGACACGGACAGGAUUGACAGAUUGAUAGCUCUUUCUCGAUUCCGUGGGUGGUGGUGCAUGGCCGUUCUUAGUUGGUGGAGCGAUUUGUCUGGUUAAUUCCGAUAACGAACGAGACUCUGGCAUGCUAACUAGUUACGCGACCCCCGAGCGGUCGGCGUCCCCCAACUUCUUAGAGGGACAAGUGGCGUUCAGCCACCCGAGAUUGAGCAAUAACAGGUCUGUGAUGCCCUUAGAUGUCCGGGGCUGCACGCGCGCUACACUGACUGGCUCAGCGUGUGCCUACCCUACGCCGGCAGGCGCGGGUAACCCGUUGAACCCCAUUCGUGAUGGGGAUCGGGGAUUGCAAUUAUUCCCCAUGAACGAGGAAUUCCCAGUAAGUGCGGGUCAUAAGCUUGCGUUGAUUAAGUCCCUGCCCUUUGUACACACCGCCCGUCGCUACUACCGAUUGGAUGGUUUAGUGAGGCCCUCGGAUCGGCCCCGCCGGGGUCGGCCCACGGCCCUGGCGGAGCGCUGAGAAGACGGUCGAACUUGACUAUCUAGAGGAAGUAAAAGUCGUAACAAGGUUUCCGUAGGUGAACCUGCGGAAGGAUCAUUA
5FWT , Knot 166 406 0.81 40 221 377
MGILPSPGMPALLSLVSLLSVLLMGCVAETGAPSPGLGPGPECFTANGADYRGTQNWTALQGGKPCLFWNETFQHPYNTLKYPNGEGGLGEHNYCRNPDGDVSPWCYVAEHEDGVYWKYCEIPACQMPGNLGCYKDHGNPPPLTGTSKTSNKLTIQTCISFCRSQRFKFAGMESGYACFCGNNPDYWKYGEAASTECNSVCFGDHTQPCGGDGRIILFDTLVGACGGNYSAMSSVVYSPDFPDTYATGRVCYWTIRVPGASHIHFSFPLFDIRDSADMVELLDGYTHRVLARFHGRSRPPLSFNVSLDFVILYFFSDRINQAQGFAVLYQAVKEEGSENLYFQGGSLPQERPAVNQTVAEVITEQANLSVSAARSSKVLYVITTSPSHPPQTVPGTHHHHHHHHHH
5XEM , Knot 133 310 0.82 38 180 294
GPLGSLANSVIDLIGNTPLVKINNIDTFGNEIYVKLEGSNPGRSTKDRIALKMIEEAEKEGLIDKDTVIIEATSGNTGIGLAMICAVKNYKLKIVMPDTMSIERIQLMRAYGTEVILTDGSLGMKACLEKLEELKKNEKKYFVPNQFTNVNNPKAHYETTAEEILKDLNNKVDVFICGTGTGGSFSGTAKKLKEKLPNIKTFPVEPASSPLLSKGYIGPHKIQGMGMSIGGIPAVYDGSLADDILVCEDDDAFEMMRELSFKEGILGGISTGATFKAALDYSKENADKGLKIVVLSTDSGEKYLSNICDL

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(7SYR_1)}(2) \setminus P_{f(5FWT_1)}(2)|=9\), \(|P_{f(5FWT_1)}(2) \setminus P_{f(7SYR_1)}(2)|=214\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100011001100001001101101010100010000111110011100101010100011101010101100110101101111001011101100010011100110010110000000110010001000000000010001110110010110110000111100110101010011011101001100000000101111111101010101000100111001111001100011001100000000011000011001111111011101001101100001101100001110110000111001100101010000001011011011011000100011101000100001001100000110110110010010100010010110110010111011011111100111100011000011111111110001111110110010010100011111111011011101010111001000100000110001111111011011011111101101101011110000000111100001011001111011100010000111000000110111110001001111110111000110100110110010110110000110000110110101010011110010010110011111100010110011100001111101110111011000100101111011100100100010000010000001000000110100000001101000001100111010000101111000111101000100001111111001111010001111011100011100100011101001011001111101101111011110010110000100001001100000111100111100101100111111110110011111010001010010100100111110111100000111001101011110111001111011111010001001111101000001001100111110111110011111000111110110011101001001011000011001011101101001100110110101101101001000001011000100111011000001111110011110000011100001111111101011001011110011110001111111000110111111010010011111011110001011000110001100011010111111000010001100011101011101111001101110011011000000000110000101110110110101011001000001100110111101100010001100110000110110111011110000110101001100110010101100000111011001101000000110000001111111011101101000110010001111001110110110111000101101000001110100011110010101010100101001100110001101010100010000101001101110101110110001001110000100010110111110011111001011001000000101110111111000001101110101110010111000101001100111000001000000101010100100010010010010011001110110001101111000001110011000010011110011000101100001101111010011111110110011100011001000111111110111110010110111100000101110111000101111111001001
Pair \(Z_2\) Length of longest common subsequence
7SYR_1,5FWT_1 223 5
7SYR_1,5XEM_1 184 2
5FWT_1,5XEM_1 161 3

Newick tree

 
[
	7SYR_1:10.49,
	[
		5XEM_1:80.5,5FWT_1:80.5
	]:27.99
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2276 }{\log_{20} 2276}-\frac{406}{\log_{20}406})=462.\)
Status Protein1 Protein2 d d1/2
Query variables 7SYR_1 5FWT_1 340 250
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]

Graphviz Engine:
Graphviz Engine: