Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7SYK_1)}(2) \setminus P_{f(6OIA_1)}(2)|=10\),
\(|P_{f(6OIA_1)}(2) \setminus P_{f(7SYK_1)}(2)|=219\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100011001100001001101101010100010000111110011100101010100011101010101100110101101111001011101100010011100110010110000000110010001000000000010001110110010110110000111100110101010011011101001100000000101111111101010101000100111001111001100011001100000000011000011001111111011101001101100001101100001110110000111001100101010000001011011011011000100011101000100001001100000110110110010010100010010110110010111011011111100111100011000011111111110001111110110010010100011111111011011101010111001000100000110001111111011011011111101101101011110000000111100001011001111011100010000111000000110111110001001111110111000110100110110010110110000110000110110101010011110010010110011111100010110011100001111101110111011000100101111011100100100010000010000001000000110100000001101000001100111010000101111000111101000100001111111001111010001111011100011100100011101001011001111101101111011110010110000100001001100000111100111100101100111111110110011111010001010010100100111110111100000111001101011110111001111011111010001001111101000001001100111110111110011111000111110110011101001001011000011001011101101001100110110101101101001000001011000100111011000001111110011110000011100001111111101011001011110011110001111111000110111111010010011111011110001011000110001100011010111111000010001100011101011101111001101110011011000000000110000101110110110101011001000001100110111101100010001100110000110110111011110000110101001100110010101100000111011001101000000110000001111111011101101000110010001111001110110110111000101101000001110100011110010101010100101001100110001101010100010000101001101110101110110001001110000100010110111110011111001011001000000101110111111000001101110101110010111000101001100111000001000000101010100100010010010010011001110110001101111000001110011000010011110011000101100001101111010011111110110011100011001000111111110111110010110111100000101110111000101111111001001
Pair
\(Z_2\)
Length of longest common subsequence
7SYK_1,6OIA_1
229
3
7SYK_1,5BQU_1
185
2
6OIA_1,5BQU_1
146
4
Newick tree
[
7SYK_1:11.55,
[
5BQU_1:73,6OIA_1:73
]:39.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2274
}{\log_{20}
2274}-\frac{404}{\log_{20}404})=462.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7SYK_1
6OIA_1
340
253
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]