Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7RWX_1)}(2) \setminus P_{f(1JFN_1)}(2)|=64\),
\(|P_{f(1JFN_1)}(2) \setminus P_{f(7RWX_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010001001000101100100110100110011111101101011010000100101001001111111010111011001010010111001000001000000
Pair
\(Z_2\)
Length of longest common subsequence
7RWX_1,1JFN_1
140
2
7RWX_1,6YKR_1
161
3
1JFN_1,6YKR_1
167
4
Newick tree
[
6YKR_1:85.64,
[
7RWX_1:70,1JFN_1:70
]:15.64
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{225
}{\log_{20}
225}-\frac{106}{\log_{20}106})=38.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
7RWX_1
1JFN_1
51
47.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]