Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7RSV_1)}(2) \setminus P_{f(7XNZ_1)}(2)|=111\),
\(|P_{f(7XNZ_1)}(2) \setminus P_{f(7RSV_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000000100101010000101011000010111001100010000001110100010000011001100101011001001101110101101000101100000010100011101001000011101101101100001001001101000000001000100011001010000110011101001111000001101001000100111001000001100101011100000000000100001010110010011101000101100111100011001101101100001000000001011110000101001011111101010101111001011001111101110000110011110010010000111011011001100001010101001110000011101100111101100010100110001100011011010110001000110011001111100010011100010110101101110010111111010001101111000000001000000111010000011101101110101101110100010010001010100001100100110001011111110010
Pair
\(Z_2\)
Length of longest common subsequence
7RSV_1,7XNZ_1
162
6
7RSV_1,3PMG_1
122
4
7XNZ_1,3PMG_1
146
4
Newick tree
[
7XNZ_1:81.77,
[
7RSV_1:61,3PMG_1:61
]:20.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1090
}{\log_{20}
1090}-\frac{478}{\log_{20}478})=159.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7RSV_1
7XNZ_1
199
176
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]