Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7RRB_1)}(2) \setminus P_{f(6OBH_1)}(2)|=131\),
\(|P_{f(6OBH_1)}(2) \setminus P_{f(7RRB_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000100011111101000110100011111001101100101000100101101001000000011011110101101110101010011100111100010001011111101001110100001001100001011101001000011111011101111011011101101101000001101110110010011011001000101011101101010110101010011100111001001111011000110010111110001111011011001000111100011001000101001110010111001001010111010000101100011111000100000000100101010110011011001000000011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{626
}{\log_{20}
626}-\frac{232}{\log_{20}232})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7RRB_1
6OBH_1
145
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]