Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7RKP_1)}(2) \setminus P_{f(7QJI_1)}(2)|=65\),
\(|P_{f(7QJI_1)}(2) \setminus P_{f(7RKP_1)}(2)|=119\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100100110001011110110011000100101000011100001010110001100001011010001111011001000011001011101000000011011100001010010010010000001011010100110010001000001010001101000110001100100000
Pair
\(Z_2\)
Length of longest common subsequence
7RKP_1,7QJI_1
184
3
7RKP_1,8PSH_1
150
2
7QJI_1,8PSH_1
202
3
Newick tree
[
7QJI_1:10.80,
[
7RKP_1:75,8PSH_1:75
]:27.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{635
}{\log_{20}
635}-\frac{197}{\log_{20}197})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7RKP_1
7QJI_1
153
112
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]