Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7RJC_1)}(2) \setminus P_{f(2RHD_1)}(2)|=122\),
\(|P_{f(2RHD_1)}(2) \setminus P_{f(7RJC_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101001100100001000110000100110110000111000011111111000000000110110001110001010110100000101111000000100110111011001101100001000000101010110101000110010001101001111011000010010000010011001100001111010100001101101010110110101011011100101000011010101110101100100011011111010101000110100101101100001100000000010001111001011001010010010100100101010010110101010011100110011100011001111100001001100101101001001100011000111010111001100000000111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{614
}{\log_{20}
614}-\frac{175}{\log_{20}175})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7RJC_1
2RHD_1
156
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]