Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7RFZ_1)}(2) \setminus P_{f(2KYU_1)}(2)|=217\),
\(|P_{f(2KYU_1)}(2) \setminus P_{f(7RFZ_1)}(2)|=25\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000111101011100111110000100101100000111101100010101010011011000010001010011001100000111001101111101101110000011010011110011010000001110111111110111010101000111111011101011001110011101111111110100110101001010100100000111110110011101101100001011100011100100110001011100111101101111001111011101110110100000001101111111101100100010001010100101100001001100111111111100101000001111100000110100110110011101110110100001101110110011011001100001011100011100101100000001001010110001010000000111000001111010011110101
Pair
\(Z_2\)
Length of longest common subsequence
7RFZ_1,2KYU_1
242
4
7RFZ_1,3OLF_1
172
3
2KYU_1,3OLF_1
172
3
Newick tree
[
2KYU_1:11.57,
[
7RFZ_1:86,3OLF_1:86
]:24.57
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{577
}{\log_{20}
577}-\frac{67}{\log_{20}67})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7RFZ_1
2KYU_1
192
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]