Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7QCL_1)}(2) \setminus P_{f(3ETB_1)}(2)|=163\),
\(|P_{f(3ETB_1)}(2) \setminus P_{f(7QCL_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0110010101100000011100011100000001011010001111100001101101001010010100000001110100101011000001000011100101010011101000000100010010011100000011100101111010101000111110000110100011001101101111100011010101100011000010010000000000111010110000111001110010010010000000011101111100010000010110011000111000111110000010110001111001001010101110100010101000001101100100000010111001000000000000111010101010100111101010001011100110011001010000010101101110010000001100010010011001011000001010000001000010101111010001111000110100001101010100011011000000001000010000110111000110000001110110111000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{835
}{\log_{20}
835}-\frac{252}{\log_{20}252})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7QCL_1
3ETB_1
207
144.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]